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Volume asymptotics

Let f : Xm+n → Ym be a degenerating family of compact complex manifolds
(of dim n).

Let Ωt be a ”family” of holomorphic n forms on the fiber Xt , t ∈ Y .

What is

v(t) :=

∫
Xt

|Ωt |2 =

∫
Xt

cnΩt ∧ Ωt

as a function of t?

Problem: Identify the asymptotics/singularity (”poles and zeros”) of v(t),
i.e. identify v(t) up to a bounded factor.

Equivalently Asymptotics of L2 metrics (to be defined) in a general
geometric setting.
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Geometric setting: Log Calabi-Yau fibrations

More precisely, let f : Xm+n → Ym be a surjective projective morphism with
connected fibers between complex manifolds.

A pair (f , L) of f : X → Y and a line bundle L is Log Calabi-Yau if KX + L is the
pullback of ”some” line bundle, i.e. there exists a line bundle M on Y such that

KX + L = f ∗(KY + M)

holds. (KX ,KY canonical line bundles)

Additive notation of line bundles : L1 + L2 := L1 ⊗ L2

If L = OX , a general smooth fiber Xt has KXt trivial.
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A special case

Example (Kodaira 1963, ......, T. Fujita 1986)

Elliptic fibration f : X 2 → Y 1 : a general fiber Xt is an elliptic curve.

Singular fibers are classified (Kodaira):
f −1(Pi ) ∈ [mIb, II , III , IV , I

∗, II ∗, III ∗, IV ∗] , ai ∈ [1− 1
m ,

1
2 ,

1
6 ,

1
5 ,

1
4 ,

3
4 ,

1
3 ,

2
3 ]

Canonical bundle formula relates KX and KY :

KX = f ∗(KY + (moduli part) +
∑

aiPi )

as equality of Q-line bundles; (moduli part) = 1
12 j
∗OP1(1), j : Y → P1.
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Line bundles and Singular hermitian metrics

Let L be a holomorphic line bundle on a complex manifold X with transition
functions {gij} on a locally trivializing open cover {Ui}i∈I .

A (smooth or singular) hermitian metric e−ϕ of L can be identified with a
family of functions e−ϕi satisfying e−ϕi = |gij |−2e−ϕj for evey i , j ∈ I .

Abuse of notation : e−ϕ refers to the collection of e−ϕi ’s

We define e−ϕ to be a singular hermitian metric if ∀i , ϕi is
plurisubharmonic.
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Plurisubharmonic functions

Definition

Let U be an open subset of Cn. Let ϕ : U → R ∪ {−∞} be a function, not
≡ −∞ on any connected component of U. The function ϕ is plurisubharmonic
(psh for short) if

1 ϕ is upper semicontinuous, and

2 for any complex line L in Cn, the restriction of ϕ to L ∩ U is either
subharmonic or ≡ −∞ (on each connected component of L ∩ U).

Example: ϕ(z) = log|g(z)| is psh when g is holomorphic.

Whenever ϕ(z) = −∞ (or ϕ is not locally bounded), we will say that ϕ has
singularities.

In general, a psh function can have complicated singularities.
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Let a ∈ U. The Lelong number of ϕ at a is defined as

νa(ϕ) := max{γ ≥ 0 : ϕ(z) ≤ γ log|z − a|+ O(1) near a }

Curvature current i∂∂ϕ := i∂∂ϕj is well-defined and ”nonnegative” as a
current of bidegree (1,1).

Example

Let s ∈ H0(X , L) be a holomorphic section, viewed as a family of holomorphic
functions si satisfying si = gijsj on {Ui}. Taking ϕi = log|si |2, it defines a psh
metric of L. The curvature current is the one associated to the divisor of s.

A singular hermitian metric (or a psh metric) of L generalizes a
holomorphic section of L in this sense.
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L2 metric of a log Calabi-Yau fibration

Let f : Xm+n → Ym be a log Calabi-Yau fibration.

Since KX + L = f ∗(KY +M), the projection formula says M = f∗(KX/Y + L)
where KX/Y := KX − f ∗(KY ), the relative canonical line bundle.

A holo. section s of the direct image f∗(KX/Y + L) = M defines a family of
(L|Xt )-valued n-forms t 7→ σt = σ|Xt (t ∈ Y ).

Remark: ”σ” is not a globally (uniquely) defined, but with a choice of
t = (t1, . . . , tm), σ ∧ dt is globally defined (dt = dt1 ∧ . . . ∧ dtm).

σ ∧ dt = σ̃ ∧ dt if and only if σ|Xt = σ̃|Xt ,∀t
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L2 metric of a log Calabi-Yau fibration

A holo. section s of the direct image f∗(KX/Y + L) = M defines a family of
(L|Xt )-valued n-forms t 7→ σt = σ|Xt (t ∈ Y ).

Now let e−λ be a sing. herm. metric of L.

The induced L2 metric e−µ for M is defined by the fiberwise integration :
for Xt smooth fibers,(

|s|2 · e−µ
)

(t) =

∫
Xt

in
2

σ|Xt ∧ σ|Xt e
−λ

Can also view the fiberwise integration as an operator sending
2(n + m)-forms on X → 2m-forms on Y .

Volume Asymptotics

= Asymptotics (Singularities) of L2 metrics

= Asymptotics of the fiberwise integration

More generally, we can allow L, M to be Q-line bundles.
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Volume asymptotics for dimY = 1

Asymptotics for e−µ in
(
|s|2 · e−µ

)
(t) =

∫
Xt
in

2

σ|Xt ∧ σ|Xt e
−λ can be

roughly summarized as ( t is a local coord. on Y ) :

(|t|2)a · |log|t|2|b

Recent: [Yoshikawa 2010], [Takayama 2016], [Gross-Tosatti-Zhang 2016],
[Berman 2016], [Boucksom-Jonsson 2017], [Eriksson-Freixas i Montplet-
Mourougane 2018]

Old: [Arnold-Gusein-Zade-Varchenko 1984, Theorem 10.2] and more

Various settings and statements : Equality or upper bound, Log version
(twisted by L) or not, Information on the exponent a, ...
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Volume asymptotics for dimY = 1
Let f : X n+1 → Y 1 be a surjective projective morphism between complex
manifolds where dimY = 1.

Assume L = 0 i.e. KX + 0 = f ∗(KY + M) so that M = f∗KX/Y (and a
general smooth fiber of f has trivial canonical line bundle).

Suppose that X0 =
∑

ajEj snc (simple normal crossing).

Theorem (Eriksson-Freixas-Mourougane ’18 cf. Boucksom-Jonsson ’17,

cf. Takayama ’16, ......)

The L2 metric for M := f∗KX/Y has the asymptotics (near t = 0)

e−µ =

(
1

|t|2

)(1−c(X0))

|log|t|2|b

where t is a local holomorphic coordinate on Y , b ≥ 0 is an integer and c(X0) is
the log-canonical threshold of (X ,X0).

The log-canonical threshold of a pair (X ,D = (g = 0)) is the supremum of
the exponent c for which 1

|g |2c is locally integrable.
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Volume asymptotics for dimY ≥ 2

Question
Generalization for higher dimension of Y ?

The only previous result: as a consequence of Hodge theory
[Cattani-Kaplan-Schmid 1986], Kawamata’s semipositivity theorem has a
case when the L2 metric has vanishing Lelong numbers (∼ |log|t|2|b ).

Difficulty in the general case : What will be generalization of
(|t|2)a · |log|t|2|b ?

There is a candidate for generalization of |t|2a from algebraic geometry,
defined in the general canonical bundle formula due to Kawamata.

Starting from a general f : X → Y , one can use Hironaka’s resolution both
on X and on Y to come to the following situation. (”Resolution of f ”)
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Conditions for SNC fibration: “Resolution of f ”

X , Y are complex manifolds.

B =
∑

Bi is a ”reduced” snc divisor on Y (i.e. B = red(B)).

R = Rh + Rv is an snc divisor on X with f (Supp(Rv )) ⊂ SuppB.

red(R) + f ∗B is an snc divisor on X .

f is a smooth morphism over Y \ B ; Rh is a relative snc divisor over Y \ B.

KX + R is Q-linearly equivalent to the pullback of some Q-line bundle on Y
(which we can write as KY + M, thus an LCY fibration).

We will call f : (X ,R)→ (Y ,B) an SNC LCY fibration. (simple normal
crossing + log Calabi-Yau)

Such f is locally given by monomials in local coordinates.
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Definition (Kawamata 1998)
Given an SNC LCY fibration f : (X ,R)→ (Y ,B) (in particular given R), define
the discriminant divisor of R to be

BR :=
∑

ciBi

where the coefficient ci is given by log-canonical thresholds :

1− sup{c : (X ,R + cf ∗Bi ) is log-canonical over the generic point of Bi}

BR is supposed to capture singularities of fibers and the divisor R.

BR generalizes Kodaira’s
∑

aiPi from the elliptic fibration case.

Kawamata said “The coefficients were defined so that they behave well
under semi-stable reduction.”
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The moduli part line bundle J := J(X/Y ,R) is defined to be the Q-line
bundle satisfying the equality of Q-line bundles:
KX + L = O(KX + R) = f ∗(KY + M) = f ∗(O(KY + BR) + J).

Theorem (Kawamata’s general canonical bundle formula)

From KX + R = f ∗(KY + BR + J), the moduli part line bundle J is nef.

This generalizes the elliptic fibration case where J was 1
12 j
∗OP1(1),

j : Y → P1 (thus semiample).

This is applied for “Subadjunction of log-canonical centers” in [Kawamata
’98]. (→ applications to MMP )
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Question 1: cf. [Eriksson-Freixas-Mourougane]

Let f : (X ,R)→ (Y ,B) be an SNC log Calabi-Yau fibration.

Is there a metric version/approach for this general canonical bundle formula of
[Kawamata 1998]?

More precisely, does the L2 metric (induced by the divisor R) have singularities
described by the discriminant divisor BR ? (up to an extra psh weight with
vanishing Lelong numbers)

Recall: KX + L = O(KX + R) = f ∗(KY + M) = f ∗(O(KY + BR) + J)
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Let f : (X ,R)→ (Y ,B) be an SNC log Calabi-Yau fibration (with
f0 : X0 → Y0 the smooth fibers).

Let α be a singular volume form on X with poles along R =
∑k

i=1 aiRi ,
Ri = div(wi ) as in (up to some smooth bounded factor)

α(w) = (
∏k

i=1|wi |−2ai )|dw1 ∧ . . . ∧ dwn|2

Question 2 : Analytic characterization of the discriminant divisor

When we integrate α along fibers of f0, do we get a singular volume form on Y
having poles along the discriminant divisor BR (times a psh weight e−ϕ with
vanishing Lelong numbers ) as in

(f∗α)(z) = (
∏p

j=1|zj |−2cj )e−ϕ(z)|dz1 ∧ . . . ∧ dzm|2 ?

Our original motivation was its application to L2 extension theorems

Question 1 implies Question 2 (essentially equivalent, but Q1 slightly more
precise).

Subtlety: a priori, the ”extra factor” e−ϕ(z) may have nothing to do with
semipositive curvature (i.e. psh).
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Main result

Question 1 and Question 2 have positive answers.

Theorem (K. )

Let f : (X ,R)→ (Y ,B) be an SNC log Calabi-Yau fibration :
KX + R = f ∗(KY + BR + J) : in terms of line bundles,
KX + L = f ∗(KY + M) := f ∗(KY + J + H) where H = O(BR)

Let λ be a sing herm metric of L given by the snc divisor R (not necess. effective).

Then the induced L2 metric µ for the Q-line bundle M is equal to the product
of sing. herm. metrics (H, η) and (J, ψ), i.e.

e−µ = e−ηe−ψ where

η is a sing. herm. metric given by the discriminant divisor BR and

ψ is a sing. herm. metric of J with nonnegative curvature current (i.e. a psh
metric) and with vanishing Lelong numbers.

In particular, the moduli part J is nef.
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Sketch of proof

Step 1: As an important example, first artificially assume that the fiber
integral f∗α of α is known to (*) have poles along some snc divisor Γ on Y
(ignoring e−ϕ with vanishing Lelong numbers, for the moment).

Then using f∗(α ∧ f ∗t) = f∗α ∧ t for appropriate real-valued functions of the

type t =
∏k

i=1|wi |2bi , we can show that Γ must be equal to the discriminant
divisor BR .

Take t with poles along δB − Γ (δ < 1). Then f∗α ∧ t is locally integrable,
thus so is α ∧ f ∗t. This implies Γ ≥ BR .

Suppose that Γ 6= BR . One gets contradiction by taking t with poles along
δB − BR .
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Sketch of proof

Step 2(??): Now try to show the condition (*) (this time together with
e−ϕ) by direct computation, which will proceed as follows.

Since f : (X ,R)→ (Y ,B) is SNC, it is given by monomials in local
coordinates w on X and z on Y adapted to the snc divisors R and B.

For i = 1, . . . ,m, the map f is given by zi = w a1i
1 . . .w

a(n+m)i

n+m .

We need to integrate on each smooth fiber,
α = 1∏

|wi |2ri
|dw1 ∧ . . . ∧ dwn+m|2 which is then written like

α = 1∏
ai 6=0|ai/wi |2

∏
|wi |2ri

|f ∗ dz1z1
∧ · · · ∧ f ∗ dzmzm

|2 ∧ |dw1+m ∧ · · · ∧ dwn+m|2.
where w1+m, . . . ,wn+m are fiber variables.
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α = 1∏
ai 6=0|ai/wi |2

∏
|wi |2ri

|f ∗ dz1z1
∧ · · · ∧ f ∗ dzmzm

|2 ∧ |dw1+m ∧ · · · ∧ dwn+m|2.
where w1+m, . . . ,wn+m are fiber variables.

Use wm+j = eρj e iθj for j = 1, . . . , v for some v ≤ n.

Eventually it reduces to computing∫
ecvρv . . .

∫
ec2ρ2

(∫
ec1ρ1dρ1

)
dρ2 . . . dρv

where the intervals for the repeated integration are as follows:

0 ≥ ρv ≥ max
(
b−1v1 log|z1|, . . . , b−1vm log|zm|

)
0 ≥ ρv−1 ≥ max

(
b−1v−1,1(log|z1| − bv1ρv ), . . . , b−1v−1,m(log|zm| − bvmρv )

)
...etc

(where any item in the max involving b−1ji with bji = 0 should be replaced by
−∞.)

At this point, subtracting some divisor part Γ, we need to check
plurisubharmonicity AND vanishing Lelong numbers by hand, which
seems practically impossible.

Instead, we will use some outside input of plurisubharmonicity !
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Positivity of direct images

Theorem (Păun-Takayama)

Let f : X → Y be a surjective projective morphism with connected fibers between
two complex manifolds. Let L be a line bundle on X such that
KX + L = f ∗(KY + M) for some line bundle M on Y . Suppose that (L, λ) is a
psh metric and that the inclusion

f∗(KX/Y ⊗ L⊗ J (λ))→ f∗(KX/Y ⊗ L)

is generically an isomorphism. Then the induced L2 metric µ for M is a psh
metric.

Proof based on Hörmander L2 estimates.

Idea: extend the L2 metric for f0 : X0 → Y0 from Y0 to Y as a psh metric.
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Sketch of proof

Thanks to the previous theorem [PT], the induced L2 metric is a psh metric.
Since the L2 metric is characterized by the fiber integral, we now know that
the fiber integral looks like

(f∗α)(z) = e−µ(z)|dz1 ∧ . . . ∧ dzm|2

for some psh function µ.

However, the psh singularity of µ can be extremely complicated, far from a
nice algebraic one given by an snc divisor !!

How can we show that it actually looks like (for ϕ with vanishing Lelong
numbers)

(f∗α)(z) = (
∏p

j=1|zj |2cj )e−ϕ(z)|dz1 ∧ . . . ∧ dzm|2 ?

We will use the valuative viewpoint for plurisubharmonic singularities,
which makes up for the lack of a log-resolution by considering all divisorial
valuations (over the variety Y ), i.e. all exceptional divisors which can appear
after repeated blow-ups over Y .
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Equivalence of PSH singularities

Let u and v be psh functions on a complex manifold X .

We will say u is more singular than v if u ≤ v + O(1) i.e. u − v is locally
bounded above.

When u ≤ v + O(1) and v ≤ u + O(1), we will say u and v have equivalent
singularities and write u ∼ v .

When u ∼ v , they have all the same ’measures’ of singularities : Lelong
numbers, multiplier ideals, log canonical thresholds, jumping numbers,
higher Lelong numbers,...

Hence for the purpose of psh singularity, we can often consider psh functions
up to this equivalence.

Example

Let f1, . . . , fm be (local) holomorphic functions.

log
∑
|fi | ∼

1

2
log
∑
|fi |2 ∼ log max

i
|fi |
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Valuative equivalence of PSH singularities

The multiplier ideal sheaf of a psh function u on X is the ideal sheaf J (u)
of germs f ∈ OX locally satisfying∫

|f |2e−2udV <∞.

Definition
Two psh functions ϕ and ψ on Y are valuatively equivalent if the following two
equivalent conditions (thanks to [Boucksom-Favre-Jonsson 2008] and the
openness theorem of [Guan-Zhou]) hold:

(1) For all real m > 0, all the multiplier ideals are equal : J (mϕ) = J (mψ).

(2) At every point of all proper modifications over X , the Lelong numbers of ϕ
and ψ coincide. In other words, for every divisorial valuation v centered on Y ,
we have v(ϕ) = v(ψ). (Generic Lelong number along the (exceptional) divisor E
where v = vE .)
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Sketch of proof

Now we go back to the proof.

Step 1: Assuming that the fiber integral f∗α of α is already known to have
poles along some snc divisor Γ on Y , we were able to show that Γ must be
equal to the discriminant divisor BR .

Step 2: We know that the fiber integral looks like

(f∗α)(z) = e−µ(z)|dz1 ∧ . . . ∧ dzm|2

for some psh function µ.

Now we show that µ is valuatively equivalent to the psh function ψBR
which

is associated to the discriminant divisor BR (which we can assume effective
from assuming R effective) : v(µ) = v(ψBR

).

The proof is adaptation of the argument in Step 1 to a higher model
π : Y ′ → Y such that v is realized as a prime divisor in Y ′.
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Sketch of proof

Step 3: µ is a psh metric for the line bundle M := H + J while ψBR
is for

H := O(BR). From the Siu decomposition of the curvature current of µ,
Θµ =

∑
ν(T ,Yk)[Yk ] + RT , the divisor part belongs to the first chern class

of H.

RT is with vanishing Lelong numbers and belongs to J. There exists a sing.
herm. metric for J with the curvature current equal to RT .

Since we identified the ”full psh singularity” to be precisely equal to the
discriminant divisor, the moduli part line bundle is left with ”empty
singularity”.
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What is L2 Extension?

Let Y ⊂ X be a submanifold of a complex manifold. Let L be a line bundle
on X and KX the canonical line bundle of X .

Very roughly, an L2 extension theorem is a statement that (under suitable
conditions on X ,Y , L, . . .):

If a certain L2 norm ‖s‖Y is finite for a holomorphic section s on Y of
(KX ⊗ L)|Y , then there exists s̃ ∈ H0(X ,KX ⊗ L) such that

s̃|Y = s and ‖s̃‖X ≤ c‖s‖Y

for some constant c > 0.

The input L2 norm ‖s‖Y plays here the crucial role of deciding whether a
given section can be extended or not.

Since [Ohsawa-Takegoshi 1987], there have been extensive developments on
L2 extension, especially when Y is of codimension 1. Our interest is in the
generality of Y being of arbitrary codimension.
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Application to L2 extension theorems in SCV

A previous paper [K. 2007] gave a general L2 extension theorem formulated
for a log-canonical center Y ⊂ X of a log-canonical pair.

More recently [Demailly 2015] gave an L2 extension theorem (essentially) in
the same setting from a different viewpoint, taking the input L2 norm ‖s‖Y
w.r.t. Ohsawa measure dV [Ψ] on Y . It can be understood in terms of
fiber integral along µ : E → Y (exceptional divisor lying over Y in a
log-resolution of the LC pair at hand).

In [K.2007], the L2 norm was taken wrt ”Kawamata metric” defined in
terms of the discriminant divisor of µ : E → Y ′(→ Y ).

From our main result, these L2 norms are essentially equivalent and the
two theorems (each with its own advantages) can be combined,
strengthened.
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